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INTERIOR MOTION OF AN ELASTIC HALF-SPACE DUE TO A
NORMAL FINITE MOVING LINE LOAD ON ITS SURFACE+}

F. R. NorwooD

Sandia Laboratories, Albuquerque, New Mexico 87115

Abstract—The response of an elastic half-space to a normal impulsive semi-infinite line load moving parallel to its
initial position is considered. The solution is found to be a superposition of cylindrical, spherical and conical waves,
and is found by Cagniard’s technique and by extending the real transformation of de Hoop to double Fourier
integrals with singularities on the real axis of the transform variables. Velocities in the interior of the half-space
are given for arbitrary values of Poisson’s ratio in terms of single integrals and algebraic expressions. The case of
a stationary load acting over one-quadrant of the bounding surface is obtained as the infinite velocity limit of the
parallel motion. By a simple superposition the solution is obtained for a half-space acted upon by a finite line load
or loaded on a finite rectangular region.

INTRODUCTION

THE present paper uses a recently developed technique to obtain solutions for an elastic
half-space acted upon by line loads with finite characteristic dimensions [1]. The motivation
for the effort is the fact that finite loads represent physical situations better than infinite
loads ; also, the motivation arises from the intrinsic value for the applied mechanician of a
simple modification of well known techniques which allows him to solve heretofore un-
solved problems. The solution is found by Cagniard’s technique and by extending the real
transformation of de Hoop to double Fourier integrals with singularities on the real axis of
the transform variables. The technique has been carefully illustrated in solving the case of a
stationary rectangular load and will now be applied to the more complex problem of a
moving semi-infinite line load. The steps involved for the moving line lead will be clearly
delineated, and then a simple limiting process will be indicated for obtaining the response
to a stationary load acting over one-quadrant of the bounding surface. The limiting solution
agrees with the results of [1].

Previous work on transient solutions has largely been confined to infinite line loads
[2-5], and there appears to be no work on finite or semi-infinite line loads. Thus, the present
paper represents the first attempt in solving a different variety of line problems. However,
it will be shown in the sequel that the solution for the corresponding infinite line load prob-
lem is contained in the solution for the finite line load. The solution is obtained by using
double Fourier transforms on space, Laplace transforms on time and Cagniard’s technique.
The same theorems used in [6] can be employed here to rigorously justify the various steps
in the inversion.

Gakenheimer [7] has found that the interior solution for an expanding ring load can be
used for numerical calculations of the disturbance near the surface. The singularities
characteristic of the surface appear in the interior solution as one approaches the surface,

+This work was supported by the U.S. Atomic Energy Commission.
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e.g. Rayleigh waves. In view of these remarks, in the present work interior solutions are
given. The results hold for arbitrary values of Poisson’s ratio.

STATEMENT OF THE PROBLEM

In arectangular coordinate system, consider the half-space z > 0, with bounding surface
z = 0. The geometry of a semi-infinite line load moving parallel to its initial position is
depicted in Fig. I, where the x coordinate of the load at time tis given by c1, ¢y < ¢ < =%

z

FiG. 1. Problem of a parallel moving surface line load.

The governing wave equations are

02 2
272 2y72
VO = -, sV = —-,
! or 2 ot?

V.¥=0 {h
and the potentials ® and ¥ are related to the displacements through U = V@ +V x¥;
where V? is the Laplacian operator, ¢, and c, are the wave speeds ved = A2 vel =y,
2 and p are the Lamé constants and v is the material density. The stress—strain relations
needed in the sequel are

1

Ty = AV2DO;;+ 2, &y = 3 2)

ﬁui ﬁuj
dx;  Ox;

where §;; is the Kronecker delta. The boundary conditions (at z = 0} for the problem are

Tyz(x’ Y, O’ t) = sz(x, Y, 0’ t) =0 Tzz(xa ¥, 0) t) = 5(X—CI)H(,V)H(X) (3)

+ The cases 0 < ¢ < ¢, and ¢, < ¢ < ¢, can also be solved by the present technique (see [6] for more details).
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where &(t) is the Dirac delta function and H(y) is the Heaviside unit function. The potentials
® and ¥ (and hence the displacements and stresses) are required to vanishas z — o ; that is

lim (@, ¥, U, etc.) = 0 (@)

The initial conditions are taken as
®(x, y, z,0) = ¥(x, y, x, 0) = D(x, y, z,0)/0t = 0¥(x, y,z,0)/0t = 0 (%)

representing quiescence at t = 0.

TRANSFORM SOLUTIONS

The Laplace and double Fourier transforms to be used here are defined, respectively, by
the equations

Fevz,p) = f ey 2, e P dt (6a)
0
1 ¢+ i
fepat=s-|  fenzpend (6b)
and .
PP v, 2, 1) = f f F(x, 3, 2, e+ dx dy (7a)
1 o — it .
Senni =g [[ M et dkds (7b)

where ¢ is chosen to the right of any singularity of f, and — ie lies within the strip of con-
vergence [8].

Following the scheme of Ref. [1], the load given by the last of equations (3) is considered
as the limit ¢ — 0 of the expression [ —exp(— ¢y)d(x — ct)H(y)H(x)]. The formal application
of the transforms to this bracketted expression gives

*(k,v,c,&) = —(p+ike)” {(E+iv)~?, —w0 < Imv < ¢, - < Imk < p/c
where p is assumed to be a real positive quantity. Since & > 0, one may set ¢ equal to zero in
equation (7b) and take advantage of the real transformation introduced by de Hoop [9]

for problems in acoustics.t Therefore k and v may be assumed to be real quantities. After
some algebra one finds that the Laplace transform of the velocity is given by

04X, y,2,p) = 0;dx, y, 2, p)+ 0%, ¥, 2,p), (= x,¥,2) (8)

t The limit £ — 0 will be taken at an appropriate step in the solution.
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where

UjX, yo 2, p) = o )2 f f F ik, v, p)I*(k, v, cE)e ~metbwpizHiksrop dledp. (o = d, ) (9)
Folk, v, p) = —nalk, v, p)[k3 +20k> +v*)] T(k, v, p) (10)

F.(k, v, p) = 2k* + 02k, v, p)T(k, v, p) (11)

Fodk, v, p) = ik[kZ +2(k* + 31Tk, v, p) (12)

Fylk, v, p) = —2ikndk, v, pidk, v, p)T(k, v, p) (13)

Fouk,v,p) = F v, k, p) = iv[kZ +2(k* +v*)]T(v, k, p) (14)

Fylk, v, p) = Flv, k. p) = —=2ivnv, k, pna(v, k. p)T(v, k, p) (15)

T(k, v, p) = {[kZ + 202 +0*)]* — 4(k* + v¥myk, v, padk, v, p)t (16}

ndk,v,p) = (K> +02+k)*. kg =pa;, clay =1 (7

nlk, v, p) = (K2 +02 + k25, k= pay,  Cciay =1 (18)

with the requirement Re n, = 0. In accordance with Lerch’s theorem, it is sufficient to
assume in these expressions that p is a real, positive number [10, p. 345], for this guarantees
a unique inverse.

The real transformation introduced by de Hoop [9] for problems in acoustics, and later
used by Mitra [11], Gakenheimer [6] and the author [1] for elastic half-space problems, will
now be applied to the real variables k and v in equation (9). For the present case, this trans-
formation may be written as rk = pwx —pgy, rv = pwy+pqx, r* = x?+ y* and leads to the
expression

ﬁja(x, Wz, p) 2 )2 J‘ J Hja(w, q, 1)[((0 q, a, ér/p)e plhiale,g, 1)z — uor] dw (19)

where
orH (0, q, 1) = (wx—gy)F(w, g, 1) (20
arH ,(w, g, 1} = (wy +gx)F (@, g, 1) 2n
H_ (o, q,1) = F(w,q,1) (22}
lw, g, a, &r/p) = —ar¥iwx —iqy +ar)” iwy +igx +Er/p) ™" (23)

TRANSFORM INVERSION

As was done in Ref. [1], the inversion of the Laplace transforms given will now be
performed by Cagniard’s technique. The steps involved will be clearly delineated.

In equation (19), let @ = io and consider o as a complex variable. One easily deduces
that, in addition to the singularities depicted in Fig. 2, there is a pole at o,(g), x0,(q) =
ar — igy, which lies to the right of the imaginary axis. Recalling that, for « = d, the intercept
of the Cagniard Contour I of Fig. 2 is greater than or equal to a; 7R~ ! one concludes that if
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F1G. 2. Integration paths in the ¢-plane.

arx™! > ra,R™!, the pole a,(q) will intercept the Cagniard path for
¢’ = gda = ZH(R*a®—aix?)(rm) 2, n? =yi+2? (24)

To account for this when a = d the space is separated into the regions ax~! > a, R~ ! and
ax~ ! < a,R™*. As indicated by Gakenheimer [6], the inversion is more complicated for
a = s than for « = d. Indeed, when a = s the space is separated into the regions arx™! <
a;rR™ ' < a;, arx ' <a, <a,yrR™, a; <arx ' <a,yR™ ! and a, < a,rR™! < arx™!,
where x positive is required only in the last two regions. The inversion will now be performed
for each region.

Region 1
o =d,ax ! < a,R™!. In this region ¢,(q) lies within the closed contour T, for all

values of g and x > 0,I'; = Img axis+ C _, + Cagniard contour I + C, ,, where the various
components are shown in Fig. 2. Therefore, by residue theory, one immediately obtains

0dX, ¥, 2, p) = {H(X) f Hjq(io1(q), ¢, DW(g, &, a)e™ Pratiox@-a.1z*onlail dg

2np

~HO) [ Hidiooa) g 1wg, & aje™ et dq}

+—12*, Jm dg (f HJio, g, Di(is, q, a, {r/p)e ~Plratic,q, 1)z +or] da) (25)
Qr)*pi J- o -

where I', is the Cagniard contour I of Fig. 2, and

w(q. ¢, a) = —arligr—(ay—¢&rjp)] "
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1. To find the contribution from the first term of equation {25), take the limit & — 0
and introduce the change of variable gr = i(sx —ay), where s is a complex variable. Then
o(g) becomes a,{s), where ro(s) = ax +sy, and the integral may be written as?
aH(x) ayix+ion

le(xy Y, Z, p) =

3 Figlia, is, 1)e~ plnatiais Dz vaxtsil g/ (26)
/’L i ay/x—ix

The singularities of Fj,(ia, is, 1) are branch points at s = +(aj—a®)* and s = +(a}—a?)?,
and simple poles at s = +(cg?—a?):. If y is positive, then, since xc > Rc; > rc¢; implies
xZ¢? > (x? +y?)c? and ya < x(a? —a*)?, the contour in equation (26) lies between the
pole at s = 0 and the branch point s = {(a? —a?)?. Consequently, this contour may be
replaced by a contour along the imaginary axis and indented such that the origin lies to the
left of the contour. If y is negative, then the contour of equation (26) may be replaced by a
contour along the imaginary axis and indented such that the origin lies to the right of the
contour. In view of these remarks Fig. 3 may be used in this case mutatis mutandis and the
evaluation proceeds as in Ref. [1]. The final expression for y > 0 may be written as

Ilj(xs ¥, 2, l) = H(X)H[t —ax— n(a% - az)%]Bjd(x’ _V., 2, - ax) (27)
C
2 PATH IIT
c*l PATH IV
4

Ut cyr

MR N
I T b L
‘R ‘R

x—BRANCH POINT
o— POLE

s - PLANE
F1G. 3. Integration paths in the s-plane.

where
n“CBjd(x} Vs 2y t) = Re{tz —(a% - a2)n2] B jd(ias iS4, 1)’111(“15 554’ 1) (28}
t iz
sz, ) = 2 B @ —atppe (29)

2
n
and |y| is the absolute value of y. Using this notation, the contribution for negative values of
y is given by equation (27), with BjfXx, y, z, 1) now defined by
Bjd(x’ ¥, 2, t) = iBjd(X’ Vs t) (30)

+ The roman numeral identifies the region, and the subscript 1 the contribution from the pole at #,{g).
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where the positive sign applies only for j = y. t = t,, = ax+n(a} —a*)* in equation (27)
represents the arrival time of a conical dilatational wave which trails behind the point
x=ct,y=z=0.

2. To evaluate the contribution from the second term of equation (25), one takes the
limit ¢ — 0 and introduces the change of variable iqgr = ys; s is a complex variable. Then
oo(q) becomes o(s), where roy(s) = xs, and the integral is transformed into {no sum on j)¥

Ljx,y,z,p)=(1— (%)MJ‘ (s—a)~ ' Fiis, 0, 1)g™ Plnatis:0-Dz+xsl g g (31
u2ni J i

By omitting H(y) in equation (31), one obtains the Laplace transform of the dilatational
contribution for an infinite line load moving with velocity c.

The singularities of the integrand of (31) are a pole at s = a plus the singularities shown
on Fig. 3 and for x < 0 the contour is closed to the right of the imaginary axis. Since in this
region a;x > aR > an,thena < a;xn"'. But a;xn~ ! is the intercept of the Cagniard path,
and therefore the pole at s = a contributes for x > 0, ax™' < a;R™". Hence the contri-
bution for x > 01is given by

Ljx,y,z,0) = (1=9;,)H(y)H(t —a,p)Re(s; —a)” 'aK;(x, z, t)
—(1 =68, )ap” "H()F,(ia, 0, 1)[t —ax —(a? — a*)*z] (32)

J
nlqul = (tz—a%pz)_% jd(isl’o, l)nd(isl’()s 1)’

tlx| iz s
Sl(x’ Z, t) = 7+*(t2_a%p2)7,
p2 p2

p* = x*+z%,and |x] is the absolute value of x. The equation t = ax + z(a} —a?)* represents
a plane tangent to the cone t = ax + n(af —a”)* and intersecting the surface of the half-space
along the line x = ct.

For x < 0O the contour in (31)is closed to the left of the imaginary axis, and the contribu-
tion is found to be I, (x, y, z, t) = 0,

IZx(-x’ Y 2, t) = H(y)H(t_alp)Re(Sl +a)_ 1aI(xl(xs Z, t) (33)
IZz(x’ Vs 2, t) = —H(y)H(t—alp)Re(sl +a)_ 1aI(zl(x’ Zy t) (34)

3. The evaluation of the last term of equation (25) proceeds in precisely the same way
asfor the last term of equation (42), Ref. [1]. It may readily be seen that the total contribution

is]

0;lX, ¥, 2,8) = Lix, y, 2, ) + 15 (x, y, z, D+134x, .2, 1) (35)
in which

q1(1)

I3j(x’ ¥, 2, t) = H(t - td) ‘%d(ta 05,4, (1) dq (36)
0

Hidt,05,q9,a) = Re(t?— tﬁd)_*v alos, q, angios, g, 1) (37)
Nialo,q,a) = Afo,q,a)D (0,4, a), (nosum on j) (38)
0A0,q,a) = —ar[a*xyg(s, a)+ q*y(oy* +axr)] (39

T The subscript 2 identifies the contribution from the pole at a4(g).
1 The subscript 3 identifies the contribution from the required Cagniard path.
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qA,o, q,a) = —iar[c?y*glo, a) + g*x{ox* — axr)] (40)
Ado, q,a) = —aroyglo, a)—ar’qg*xy {41)

Filio, 4, 1) = nulg*(o, a)+¢°y*][0%y* +4°x*1Dsulo, 4. a) (42)
glo, a) = ox—ar (43)

ty = a R, q,(t) = R™Y(* —aiR*)? (44)
ta=Rai+q*F R =x?+y*+:2 (45)

o5(x, .2, 1) = %+%(f2—t§dﬁ (46)

Region 11

o =d,ax™! > a;R™", x > 0.In this region o,(q) lies within I'; only for |g| greater than
goq- Furthermore, when ¢ = g andt = t;, = R?ax ™!, the pole o,(q) lies on the Cagniard
contour I. Changes must therefore be effected in the first and third terms of equation (25)
to find v;4(x, y, z, t) in this region. Notice that ¢; may also be written ast

1

t; = R?ax ' = tyRecax ™’ 47)

and hence the inequality ax™* < a;R™ ! may also be written as t; S 1,.

1. The contribution from the pole at g,(g) is obtained from the first term of equation (25)
by restricting g* to values greater than g,. In the resulting expression one now takes the
limit ¢ — 0 and introduces again the change of variable gr = i(sx —ay) to obtain equation
{26), where now the path of integration consists of the line segments L, and L, defined by
Li:xs=ay—n, L,:x5s=ay+#, go4r < xn < o0 as shown in Fig. 4. The integration by
Cagniard’s technique proceeds as for equation (26), and the resulting expression may be
written as

I x, v, z,t) = HxX)H(t—1)Bjx, y, z, t — ax) (48)
where Bj; has been defined for equation (27),

2. The contribution from the pole at g4(q) is equal to the second term of equation (25),
and therefore equal to equation (31). However, in this region the pole at s = a lies to the
right of the Cagniard contour and does not contribute. Thus, the contribution for x > 01is
given by

,(x,y,2,t) = (1-9;)H(y)H(t —a,p)Re(s; —a)” laK; (x,z,1t) 49)

For x < 0, the contribution is given by
%, 2,0 = Lfx, v, 2,1) (50)

and I;fx, y,zt) is defined by equations (33) and (34) for j = x,z, and Hy(x, y,z, 1) =

IZy(xa Y, 2, t) = 0.
3. The contribution from the Cagniard contour I may be considered as the limit ¢ —» 0

of
1 U‘—qoa-s Jﬂloa's fr )F( 'd 51)
S + + Gh
(27':)2/“ haalls “god+e qod+ ¢ q q

+1 = 1, represents a hemispherical surface of radius ct/2 centered about the point x = ct/2, y = z = 0. The
same surface was found in [6].
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where F(g) is a generic expression for the g-integrand in the third term of equation (25).1
Proceeding the same way as for the last term of equation {42), Ref. [1], and by appealing to

Fig. 5, one immediately finds that (before taking the limit ¢ — Q)
q1(t)

adx,y,2,t) = [H{t—t))— H(t—tf +¢)] Hlt, 05,9, a)dg
o

qod — €
+HE=t5 ) [ Hult 05,00 dg
0

q1(t)
+H(t—tf—¢) Hidt, 05,9, a)dq

goate

(52)

%:\ /
dt /4t=R(a12+q2)m

a.R w.:“‘— dq

ot ot
=]

FiG. 5. Region of integration in the /¢ plane.

+ This is equivalent to the separation used in [2].
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where t} = R(af +q3,)*. Since the singularity exists only for ¢ = r,, by again considering
Fig. 5 one can also write

g1}
H3fx,y,2.1) = {H(t—faJ-H(!*tmLS)]f Hidl, 05, ¢, a) dg
0

qod— & q1{1)
+H(i—1,~ a)[ f + f ]%(t, o5, 4, q) dg (53)
¢ [l

1] oa+ e
Proceeding even further, since the singularity is not there for ¢ = t; +¢, the last two
integrals can be combined to yield

q1(1)

II3j(x! ¥, Z, t) = [H(l_td)—"H“'—"t.’.+8)+H(t“tL'"8)] %}d(t’ as, 4, a)dq (54)

(4]
It follows thatt

g1t}
3% 0,20 = HU~ (0P God) | #3lt,05,q,0)dg (59)
v

where the symbol P(t;, gq4) before the integral specifies that, when ¢t = ¢, , the value of the
integral is the Cauchy principal value [12]. In other words, when t = t;, equation (55), or
equivalently equation (52), gives

. q0d & q:{6) -
iISj(x’ ya 2, tL) = hm (f + f )‘;ei‘id(tl.a 6\-5 > qy a} dq (56)
£20 VJo qoate
Thus, in this region the total contribution is given by
vix, v, 2, 1) = Hidx, v, 2, )+ Hafx, vz, 0+ s dx, p, 2, 1) (57

where the IL;{x, y, z, t) are defined by equations (48)}-(50) and (55).

As indicated by Gakenheimer [6], when o = s the inversion is more complicated than
for the case & = d due to the appearance of head waves. However, these complications are
similar to those which arose in Ref. [1] for « = s and in regions I and II.

Region 111

a=sax ! <a,R 'andarx™ ! < a,.In this region the pole 5,(g) lies to the left of the
Cagniard contours of Fig. 2 for all values of g. Therefore, by residue theory, one immediately
obtains

l x . - io 2 F oy ¥
5js(x9 ys z, P) = 5@ {H(x) J\7 Hjs(lal(q)y d, I)W(q: é’ a)e plnslicrigha, 11z + o1(g)r] dq

HO) [ Hydiooa) g 1w, & ale” Pimowat=sooar) dq}

o f dg f H o, ¢, Dl(io,  a, Afr/p)e-”f"s“w“m”da)(58>
Q)i _ . T

where I, is either the Cagniard contour I or the Cagniard contour II of Fig. 2, depending on
the ratio of r to z and the values of g.

t These results are in accordance with the findings of [6].
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1. The contribution from each term of this equation is found in the same way as for the
corresponding term of (25). Thus, in the first term one takes the limit £ — Oand introduces the
change of variable gr = i(sx —ay) to obtain

H ay/x+ioo o
ITILAx,y,z,p)==‘22§§)f Fiia, is, e~ nain s ax 91 g (59)
ay/x~— i

The right side differs from the right side of (26) only in the subscript s for F;, and #,, and it
is easy to see that the singularities of (59) are the same as those of (26). Also, the discussion on
contours for (26) is applicable here. For y > 0 the final expression may be written as

IIIIJ(xs Y, z, t) = H(X) [H(t'— tsdc)— H(t"— tsc)]Bjs(x’ ¥, Z, t~ax)

+ H(x)H(t — t,)G X, y, 2, t — ax) (60)
wheret

tsdc(x’ Vs Z) = z(a%_a%)%+y(a%~02)%+ax (61)
telx, y, 2) = n(aj —a®)t +ax (62)
nuB(x, y, z, 1) = Im[(a} — a®)n® —t*] " *as; 'Fidia, iss, Dngia, iss, 1) (63)

t z
R o (- (64
muGidx, y, 2z, t) = Re[t?* — (a3 —a®)n?] " tasg 'F,(ia, ise, 1)4ia, ise, 1) (65)

t iz
o2, = 4 E (0 —atpry (66)

Using this notation, the contribution for negative values of y is given by equation (60), with
Bj, and Gj, now defined by

Bi(x,y,z,t) = £+ Bj(x, —y,z,t) - 67)
Gi(x,y,z,t) = +G WX, =y, z,t) (68)

where the positive sign applies only forj = y.t = t,,and t = t4 in equation (60) represent,
respectively, the arrival times of conical shear waves and head waves which trail behind the
pointx = ct,y =z = 0.

2. The contribution from the second term of (58) is found by taking the limit ¢ — 0 and
again introducing the change of variable igr = ys. This yields the expression (no sum on j)

M Ax, y,2,p) = (1-6},)

H ico .
aﬂ2§r}? f (5@ E(is 0, e rnv oDz R gs (60

As was the case for equation (31), by omitting H(y)in (69), one obtains the Laplace transform
of the shear contribution for an infinite line load moving with velocity c. The inversion of

t 1, and 1, also appear in [6].
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(69) for x > 0 gives
HIzdx, y, 2, t) = (1 -0, ) HyH(t —azp) Re als; — Mj3(x, z, 1)
+(1 =3, Hy) {H[t—a,|> l’“’(“z a})¥]~ H(t—ap);
x Ima(s, —a) ' Lijs(x, z, 1)
—(1—=9;)apn™ "H(WH(xp ™' —ac,)Fdia, 0, 1)é[t —ax —z(a3 ~ a*)*] (70
npuLjy = (a3p* — %) ¥ Fiis;. 0, Dndis,, 0, 1)

x|z
sax, 2, 1) = —5 ——5ladp? —£7) "2,
pr

nuM 3 = (1> —a3p?) " Fiss, 0, Dngliss, 0, 1),

(xzt)—HﬂP 2{t2 ajp?yt
9

For x < 0 the contour is closed to the left of the imaginary axis, and therefore the pole
at s = g is not included. Thus, for x < 0 one finds that

IIIZx(x’ ¥, 2, t) = H(}’){H[t‘" al!x! ‘—Z(Cl% —”a%)-&] N H(t - aZp)} Im a(sl + a)~ ILXZ(xv Z, t}

+H()H{t—a,p)Re als; +a) " "M 3(x, z, 1) {71
HL(x, y,z,t) = —HY){H{t —ailx] — z(a3 — a})}] — H{t —a2p)} Im a(s; +a)™ ' L;y(x, z, 1)(72)
I, (x, p,2,8) =0 (73)

3. The evaluation of the last term of {58) proceeds in precisely the same way as for the
last term of equation (42), Ref. [1]. Thus, the total contribution is

vidx, vz, ) = I {x, y, 2, )+, p, 2, )+ 5 A%, 3, 2, 0) (74)
in which
q2(1)
I, (x, y, 2, 1) = H(t—1,) Re(t? —t2) * A (06,4, A)ng dq
0
CEI

+H(rR™ ' —cya)[H(t—ty)— H{t —1,)] Im(2,— )" * 405, 4, a)n, dg
(]

galt)

+H(rR™ " —cya,) [H(t— 1)~ H(t— )] Im(t3,—1*)" 2407, 4, a)n, dq

q2(1)
(75)
N, is defined by (38}443), n; = nic;,q, 1)forj = 6,7, and

ty = a3 R, ty = a;r+2(a3—ai), tg = R¥aj—ai)/z,
q,(t) = R~ (> —a3RP)E,

qa(t) = {r [t~ 2(a3 -} —ai}?
_triz oo oy = R +¢*)}
GG{Xa W Z t) — F+Ej({ ’tqs) s tqs = (“2 +q7),

tr
07(3‘»}’, Zy t) = }i”z’ Rz(tz —t )



Interior motion of an elastic half-space due to a normal finite moving line load on its surface 1495

Region IV

a=s,a; <arx ' <a,yrR™!, x > 0. In this region the Cagniard contour II of Fig. 2 is
required. The pole ¢,(g) is included for all values of ¢ different from zero. However, when
q = 0, the pole intersects the contour at points on the horizontal straight lines to the right
of 6,. The contributions must therefore be considered as the limit ¢ — 0 of the expressions
to follow containing e.

1. The contribution from the pole at ¢,(g) is given by the first term of (58) by requiring
lgl = ¢ > 0. As for Region III, the integral may be reduced to the right side of (59), where
now 0 < ¢ < |Ims|. The inequalities a;, < arx™ ! and arx™ ' < a,rR™ ! imply (a? —a?)* <
ayx~'and ax~! < (a3 —a?)*n" !, respectively; that is, (a2 — a?)} < ayx~ ! < y(@3—a?)in" L.
Hence, as ¢ — 0, one obtains the contributiont
IV {x, 5,2, 1) = Hx)[H(t —tg) — H{t = t,)]Bj(X, y, z, t —ax) + HX)H(t — )G (X, y, z, t — ax)

(76)

tlx, v, 2) = nia, iayx~ 1, Dz +ax+ay*x~! = zx Yadx?—a*r* ) +ar’x~ ' (77)

As in the corresponding contribution in Ref. [6], p. 51, the second term of (76) is again the
conical, shear wave found in Region 111, equation (60); whereas the first term has the alge-
braic form of the plane head wave of Region III, but it now lacks the plane wave front at
t = tsdc-

2. The contribution from the pole at g(q) is given by the second term of (60) with no
additional constraints. Therefore, one immediately finds that in this region the contribution
is given by

IVoix, y, 2, 1) = 1, {x, y, z, t). (78)

3. The contribution from the Cagniard path may be obtained by noting that when
g = Othe pole o,(g) intersects the path at t = t,, 1y < 1y < t,. Proceeding as for Region I,
one finds that the contribution may be written as

IV3x,y,2,t) = I (x, y, z, 1), (79)

provided that the second integral in (75) be preceded by the symbol P(t;,0) defined for
equation (55). With this proviso, the total contribution is

Ujs(x5 ¥z, t) = IVlj(x’ Y, 2, t)+ IIIZj(x’ V., 2, t)+ III3j(xa Y, z, t) (80)
Region V

o =s,a; <ayR™ ' <arx™!,x > 0. In this region the Cagniard contour II of Fig. 2 is
also required, and the pole o,(g) contributes only for |g| greater than qos, Where

q6s = zY(R%a® — a3x?)(rn) ~? (81)

Moreover, the pole lies on the Cagniard contour II for g% = gésand t = t; . Changes must
therefore be effected in the first and third terms of (58) to find v;(x, ¥, z, t) in this region.
Corresponding to (47), one can write '

t, = R*ax ! = tRc,ax™! (82)
and hence the inequality a,rR™! S arx™! may also be written as LSt

t Compare equations (60) and (76).
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1. For the contribution from the pole at g,(g), the discussion in the paragraph preceding
equation (48) applies here, provided that g, is replaced by g,,. The resulting expression in
this case is given by

Vigx, y, z, ) = Hx)H(t—1,)G (X, y, z, t — ax) {83

where G, is defined by equation (65) for y > 0, and by (68) for y < 0.
2. The pole at g,(g) again gives a contribution equal to the second term of (58). Therefore

VZj(xs ¥, Z, t) == IIIZj(xa ¥, z, t) (84}

3. The contribution from the Cagniard contour may be easily deduced by noting that
t; > t,, and hence the pole intersects the path on the branch of the hyperbola in Fig. 2.
The evaluation proceeds as for Region I, and one finds that

vl X, ¥, 2, 1) = Vifx, p, 2, )+ UL {x, v, 2, )+ Vi {x, v, 2, 1) (85)
and
V3j(xa y, z t) = IIl3j(xs Y.z, t) (86)

provided that the first term of equation (75) be interpreted as a Cauchy principal value for
t = t; and g = q,,; that is, provided that

g2(t)
H(t—t)P(t,, g0, Re(t? —13) " A o6, S)ng dg (87)
1]

be used in place of the first term of (75).
The surfaces t = 1,,t = tg, etc., have been discussed in Refs. [1 and 6], where the appro-

priate figures appear. With the exception of the surfaces t = 15 and ¢ = ¢; all of the other
surfaces can be used to generate the wave pattern for y positive. For example, by continuing
the curve t = t, parallel to the y-axis, the surface t = a,p in equation (32) is generated.

The solution for a uniform moving line load, acting on the interval x = ¢t, —b < y < b,
z = 0, may immediately be written as

M, Y, 2, 1) = vhx, y+b, 2, 1) —vdx, y—b, 2, 1) (88)
where the superscript F L stands for finite length, and, in accordance with equation (8),

VAX, ¥, 2, 1) = VX, y, 2, )+ 0(X, ¥, 2, 1) (89)

LOAD ON ONE QUADRANT OF THE SURFACE
The solution for this case may be obtained by noting the relation
& —&o)
1/l

which is valid if f(&) is a monotonic function of ¢ vanishing for & = £, [13]. Setting
¢ = t—ax in (3);, one finds that

of(Q) =

(x, 3,0,t) = —ad(t —ax)H(V)H(x)
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where the superscript P has been added to denote parallel motion. It immediately follows
that

12(x, y,0,1) = lim [etf(x, ,0,1)] = —d(H(y)H(x)

the superscript Q identifies the quantities pertaining to a load on one quadrant of the
surface z = 0. By these arguments it follows that

gUx, y, z,t) = lim [cg"(x, y, z, 1)]

for all the corresponding quantities. For example, in the indicated limit the last term of (32)
gives the contribution

0, Hx)H(y)(a,/v)o(t~a,,)

which corresponds to the plane wave directly under the first quadrant of the x-y plane
found in [1]. The last term of (95) gives no contribution. As shown in [1], the solution for a
uniform load acting on the rectangular region at z = 0 bounded by the lines x = +a and
y = *bis given by

vR(x, y,z,t) = V¥x+a,y+b,z,t)—v¥x—a, y+b,z1)
+0¥(x—a,y—b,z,0)—v¥x+a,y—b,z 1)

where the superscript R identifies the response when the plane is loaded on a finite rectan-
gular region of its surface.

SUMMARY AND CONCLUSIONS

In the foregoing sections, exact expressions were derived for the transient response of a
half-space to a normal finite load moving on its surface. The solution was found to be a
superposition of cylindrical, hemispherical, conical and plane waves. It was found that the
solution for a normal infinite moving line is contained in the solution given here. In fact,
from equations (31) and (69), one can immediately write

73 a o - : - is z + x5
U}'(x’y,LP) = (1_51)!)"72‘5‘]._'00 (S_a) IF‘jd(lS, 0, l)e plratis,0, 1)z + ]ds

a i 1 . _ . "
+(1- (Sjy)lE J“m (s—a) " LF,(is, 0, 1)e ™ Plastis:0. Dz +xs1 g
where the superscript I identifies the solution for a moving infinite line load [2]. From these
results, one concludes that the solution is a superposition of that for an infinite line load

plus correction terms to account for the end points.

]
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AbcTpakT-—PaccMatpuBaeTcs BO3JeHCTBUME YIIPYIOrO INOJIyNPOCTPAHCTBA MO BIHAHHEM MMILY/IBCHBHOM
nonyOGecKOHEYHOH JIMHEHHOR Harpy3kd, IBHXYUICHACH NApajieNIbHO K €€ HayaJbHOMY [OJIOXKEHHIO.
HaiifieHHoe peLICHUE SABIACTCA HAJNIOKEHHEM TPEX BOJIH, 4 UMEHHO LMWIMHIAPHYECKOH, chepuueckont u
koHycHOH. Pewienue nonyueso MeronoM Kanspaa u fyrem o6o6iuenus aeicTBATENBHOTO Npeobpa3oBanys
ne I'yma na ngBofiHble uHTerpans Qypbe C CMHIYJISPHOCTSAMH Ha ICHCTBUTENBHOM OCH IepeMEHHbIX
npeobpa3oBanus. JJarOTCA CKOPOCTH BOJH BHYTPH MOJYNPOCTPAHCTBA /s *OOBIKHOBEHHBIX 3HA4YCHHMI
oTHoweHns IlyaccoHa, MCHosib3ysi MHTerpajel H anbrebpanveckue BoipaxeHnus. [lonydaerca cnyuait mirs
CTALMOHAPHOM HArpy3ku, HOefCTBYIOILEH HAa OJHOM KBAAPAHTE OrPAHMYEHHOH noOBEpxHOCTH. [lyTem
HOPOCTOrO HAJIOKEHHS HONTYYaeTCsi pelleHHe 1JI MOJYNPOCTPAHCTBA HATPYXEHHOTO KOHEUHOH JMHEWHOH
HATPY3KOM WK 3arpyXeHHOIO B KOHEYHOM IIPAMOYTOJIBHOM PaioHe.



